16.散列表(中)

本文最后更新于:6 个月前

通过上一篇可以学习到散列表的查询效率并不能笼统地说成是 $O(1)$。它跟散列函数、装载因子、散列冲突等都有关系。如果散列函数设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。

在极端情况下,有些恶意的攻击者,还有可能通过精心构造的数据,使得所有的数据经过散列函数之后,都散列到同一个槽里。如果使用的是基于链表的冲突解决方法,那这个时候,散列表就会退化为链表,查询的时间复杂度就从 $O(1)$ 急剧退化为 $O(n)$。

如果散列表中有 10 万个数据,退化后的散列表查询的效率就下降了 10 万倍。更直接点说,如果之前运行 100 次查询只需要 0.1 秒,那现在就需要 1 万秒。这样就有可能因为查询操作消耗大量 CPU 或者线程资源,导致系统无法响应其他请求,从而达到拒绝服务攻击(DoS)的目的。这也就是散列表碰撞攻击的基本原理。

下面就来学习一下,如何设计一个可以应对各种异常情况的工业级散列表,来避免在散列冲突的情况下,散列表性能的急剧下降,并且能抵抗散列碰撞攻击?

如何设计散列函数?

散列函数设计的好坏,决定了散列表冲突的概率大小,也直接决定了散列表的性能。那什么才是好的散列函数呢?

首先,散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接的影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。

实际工作中,还需要综合考虑各种因素。这些因素有关键字的长度、特点、分布、还有散列表的大小等。散列函数各式各样,下面举几个常用的、简单的散列函数的设计方法,让你有个直观的感受。

第一个例子就是上一篇的学生运动会的例子,我们通过分析参赛编号的特征,把编号中的后两位作为散列值。还可以用类似的散列函数处理手机号码,因为手机号码前几位重复的可能性很大,但是后面几位就比较随机,可以取手机号的后四位作为散列值。这种散列函数的设计方法,一般叫作“数据分析法”。

第二个例子就是上一篇的思考题,如何实现 Word 拼写检查功能。这里面的散列函数,就可以这样设计:将单词中每个字母的 ASCll 码值“进位”相加,然后再跟散列表的大小求余、取模,作为散列值。比如,英文单词 nice,转化出来的散列值就是下面这样:

hash("nice")=(("n" - "a") * 26*26*26 + ("i" - "a")*26*26 + ("c" - "a")*26+ ("e"-"a")) / 78978

实际上,散列函数的设计方法还有很多,比如直接寻址法、平方取中法、折叠法、随机数法等,这些只要了解就行了,不需要全都掌握。

装载因子过大了怎么办?

上一篇讲到散列表的装载因子的时候说过,装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大。不仅插入数据的过程要多次寻址或者拉很长的链,查找的过程也会因此变得很慢。

对于没有频繁插入和删除的静态数据集合来说,很容易根据数据的特点、分布等,设计出完美的、极少冲突的散列函数,因为毕竟之前数据都是已知的。

对于动态散列表来说,数据集合是频繁变动的,事先无法预估将要加入的数据个数,所以也无法事先申请一个足够大的散列表。随着数据慢慢加入,装载因子就会慢慢变大。当装载因子大到一定程度之后,散列冲突就会变得不可接受。这个时候,该如何处理呢?

还记得前面多次讲的“动态扩容”吗?你可以回想一下,是如何做数组、栈、队列的动态扩容的。

针对散列表,当装载因子过大时,也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4

针对数组的扩容,数据搬移操作比较简单。但是,针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以需要通过散列函数重新计算每个数据的存储位置。

你可以看下面图里这个例子。在原来的散列表中,21 这个元素原来存储在下标为 0 的位置,搬移到新的散列表中,存储在下标为 7 的位置。
image.png
对于支持动态扩容的散列表,插入操作的时间复杂度是多少呢?前面章节已经多次分析过支持动态扩容的数组、栈等数据结构的时间复杂度了。所以,这里就不啰嗦了。

插入一个数据,最好情况下,不需要扩容,最好时间复杂度是 $O(1)$。最坏情况下,散列表装载因子过高,启动扩容,需要重新申请内存空间,重新计算哈希位置,并且搬移数据,所以时间复杂度是 $O(n)$。用摊还分析法,均摊情况下,时间复杂度接近最好情况,就是 $O(1)$。

实际上,对于动态散列表,随着数据的删除,散列表中的数据会越来越少,空闲空间会越来越多。如果对空间消耗非常敏感,可以在装载因子小于某个值之后,启动动态缩容。当然,如果更加在意执行效率,能够容忍多消耗一点内存空间,那就可以不用费劲来缩容了。

前面讲到,当散列表的装载因子超过某个阈值时,就需要进行扩容。装载因子阈值需要选择得当。如果太大,会导致冲突过多;如果太小,会导致内存浪费严重。

装载因子阈值的设置要权衡时间、空间复杂度。如果内存空间不紧张,对执行效率要求很高,可以降低负载因子的阈值;相反,如果内存空间紧张,对执行效率要求又不高,可以增加负载因子的值,甚至可以大于 1

如何避免低效地扩容?

刚刚分析得到,大部分情况下,动态扩容的散列表插入一个数据都很快,但是在特殊情况下,当装载因子已经到达阈值,需要先进行扩容,再插入数据。这个时候,插入数据就会变得很慢,甚至会无法接受。

举一个极端的例子,如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表,听起来就很耗时,是不是?

如果业务代码直接服务于用户,尽管大部分情况下,插入一个数据的操作都很快,但是,极个别非常慢的插入操作,也会让用户崩溃。这个时候,“一次性”扩容的机制就不合适了。

为了解决一次性扩容耗时过多的情况,可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,只申请新空间,但并不将老的数据搬移到新散列表中。

当有新数据要插入时,将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
image.png
这期间的查询操作怎么来做呢?对于查询操作,为了兼容了新、老散列表中的数据,先从新散列表中查找,如果没有找到,再去老的散列表中查找。

通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是 $O(1)$。

如何选择冲突解决方法?

上一节讲了两种主要的散列冲突的解决办法,开放寻址法和链表法。这两种冲突解决办法在实际的软件开发中都非常常用。比如,JavaLinkedHashMap 就采用了链表法解决冲突,ThreadLocalMap 是通过线性探测的开放寻址法来解决冲突。那你知道,这两种冲突解决方法各有什么优势和劣势,又各自适用哪些场景吗?

开放寻址法

先来看看,开放寻址法的优点有哪些。

开放寻址法不像链表法,需要拉很多链表。散列表中的数据都存储在数组中,可以有效地利用 CPU 缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。链表法包含指针,序列化起来就没那么容易。你可不要小看序列化,很多场合都会用到的。

再来看下,开放寻址法有哪些缺点。

上一篇讲到,用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。所以,使用开放寻址法解决冲突的散列表,装载因子的上限不能太大。这也导致这种方法比链表法更浪费内存空间。

所以,总结一下,当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的 ThreadLocalMap 使用开放寻址法解决散列冲突的原因。

链表法

首先,链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。实际上,这一点也是前面讲过的链表优于数组的地方。

链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。

还记得之前在链表那一节讲的吗?链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,还有可能会让内存的消耗翻倍。而且,因为链表中的结点是零散分布在内存中的,不是连续的,所以对 CPU 缓存是不友好的,这方面对于执行效率也有一定的影响。

当然,如果存储的是大对象,也就是说要存储的对象的大小远远大于一个指针的大小(4 个字节或者 8 个字节),那链表中指针的内存消耗在大对象面前就可以忽略了。

实际上,对链表法稍加改造,可以实现一个更加高效的散列表。那就是,将链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑树。这样,即便出现散列冲突,极端情况下,所有的数据都散列到同一个桶内,那最终退化成的散列表的查找时间也只不过是 $O(logn)$。这样也就有效避免了前面讲到的散列碰撞攻击。
image.png
所以,总结一下,基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

工业级散列表举例分析

1. 初始大小

HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。

2. 装载因子和动态扩容

最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacitycapacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。

3. 散列冲突解决方法

HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。

于是,在 JDK1.8 版本中,为了对 HashMap 做进一步优化,引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。

4. 散列函数

散列函数的设计并不复杂,追求的是简单高效、分布均匀。

int hash(Object key) {
    int h = key.hashCode();
    return (h ^ (h >>> 16)) & (capitity -1); //capicity 表示散列表的大小
}

其中,hashCode() 返回的是 Java 对象的 hash code。比如 String 类型的对象的 hashCode() 就是下面这样:

public int hashCode() {
  int var1 = this.hash;
  if(var1 == 0 && this.value.length > 0) {
    char[] var2 = this.value;
    for(int var3 = 0; var3 < this.value.length; ++var3) {
      var1 = 31 * var1 + var2[var3];
    }
    this.hash = var1;
  }
  return var1;
}

总结

上一篇的内容比较偏理论,本篇的内容侧重实战。主要讲了如何设计一个工业级的散列表,以及如何应对各种异常情况,防止在极端情况下,散列表的性能退化过于严重。分了三部分来讲解这些内容,分别是:如何设计散列函数,如何根据装载因子动态扩容,以及如何选择散列冲突解决方法。

关于散列函数的设计,要尽可能让散列后的值随机且均匀分布,这样会尽可能地减少散列冲突,即便冲突之后,分配到每个槽内的数据也比较均匀。除此之外,散列函数的设计也不能太复杂,太复杂就会太耗时间,也会影响散列表的性能。

关于散列冲突解决方法的选择,对比了开放寻址法和链表法两种方法的优劣和适应的场景。大部分情况下,链表法更加普适。而且,还可以通过将链表法中的链表改造成其他动态查找数据结构,比如红黑树,来避免散列表时间复杂度退化成 $O(n)$,抵御散列碰撞攻击。但是,对于小规模数据、装载因子不高的散列表,比较适合用开放寻址法。

对于动态散列表来说,不管如何设计散列函数,选择什么样的散列冲突解决方法。随着数据的不断增加,散列表总会出现装载因子过高的情况。这个时候,就需要启动动态扩容。

思考

  • 何为一个工业级的散列表?工业级的散列表应该具有哪些特性?

结合学过的知识,应该有这样的要求:

  • 支持快速的查询、插入、删除操作;
  • 内存占用合理,不能浪费过多空间;
  • 性能稳定,在极端情况下,散列表的性能也不会退化到无法接受的情况。

如何设计这样一个散列表呢?根据前面的知识,从3个方面来考虑设计思路:

  • 设计一个合适的散列函数;
  • 定义装载因子阈值,并且设计动态扩容策略;
  • 选择合适的散列冲突解决方法。

关于散列函数、装载因子、动态扩容策略,还有散列冲突的解决办法,前面都讲过了,具体如何选择,还要结合具体的业务场景、具体的业务数据来具体分析。不过只要朝这三个方向努力,就离设计出工业级的散列表不远了。

  • 你熟悉的编程语言中,哪些数据类型底层是基于散列表实现的?散列函数是如何设计的?散列冲突是通过哪种方法解决的?是否支持动态扩容呢?

JDK HashMaphash函数的设计,确实很巧妙:

首先hashcode本身是个32位整型值,在系统中,这个值对于不同的对象必须保证唯一(JAVA规范),这也是常说的,重写equals必须重写hashcode的重要原因。

获取对象的hashcode以后,先进行移位运算,然后再和自己做异或运算,即:hashcode ^ (hashcode >>> 16),这一步甚是巧妙,是将高16位移到低16位,这样计算出来的整型值将“具有”高位和低位的性质。

最后,用hash表当前的容量减去一,再和刚刚计算出来的整型值做位与运算。进行位与运算,很好理解,是为了计算出数组中的位置。
但这里有个问题:为什么要用容量减去一?

因为 A % B = A & (B - 1),所以,(h ^ (h >>> 16)) & (capitity -1) = (h ^ (h >>> 16)) % capitity,可以看出这里本质上是使用了「除留余数法」
综上,可以看出,hashcode的随机性,加上移位异或算法,得到一个非常随机的hash值,再通过「除留余数法」,得到index,整体的设计过程与“散列函数”设计原则非常吻合!