设计模式之美学习(四十二)

本文最后更新于:10 个月前

如何设计实现支持递归遍历的文件系统目录树结构?

参考:组合模式:如何设计实现支持递归遍历的文件系统目录树结构?

组合模式(Composite Design Pattern)跟面向对象设计中的“组合关系(通过组合来组装两个类)”,完全是两码事。这里的“组合模式”,主要是用来处理树形结构数据。这里的“数据”,你可以简单理解为一组对象集合。

正因为其应用场景的特殊性,数据必须能表示成树形结构,这也导致了这种模式在实际的项目开发中并不那么常用。但是,一旦数据满足树形结构,应用这种模式就能发挥很大的作用,能让代码变得非常简洁。

组合模式的原理与实现

GoF 的《设计模式》一书中,组合模式是这样定义的:

Compose objects into tree structure to represent part-whole hierarchies.Composite lets client treat individual objects and compositions of objects uniformly.

翻译成中文就是:将一组对象组织(Compose)成树形结构,以表示一种“部分 - 整体”的层次结构。组合让客户端(在很多设计模式书籍中,“客户端”代指代码的使用者)可以统一单个对象和组合对象的处理逻辑。

假设有这样一个需求:设计一个类来表示文件系统中的目录,能方便地实现下面这些功能:

  • 动态地添加、删除某个目录下的子目录或文件;

  • 统计指定目录下的文件个数;

  • 统计指定目录下的文件总大小。

骨架代码如下:

在下面的代码实现中,把文件和目录统一用 FileSystemNode 类来表示,并且通过 isFile 属性来区分。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class FileSystemNode {
private String path;
private boolean isFile;
private List<FileSystemNode> subNodes = new ArrayList<>();

public FileSystemNode(String path, boolean isFile) {
this.path = path;
this.isFile = isFile;
}

public int countNumOfFiles() {
// TODO:...
}

public long countSizeOfFiles() {
// TODO:...
}

public String getPath() {
return path;
}

public void addSubNode(FileSystemNode fileOrDir) {
subNodes.add(fileOrDir);
}

public void removeSubNode(FileSystemNode fileOrDir) {
int size = subNodes.size();
int i = 0;
for (; i < size; ++i) {
if (subNodes.get(i).getPath().equalsIgnoreCase(fileOrDir.getPath())) {
break;
}
}
if (i < size) {
subNodes.remove(i);
}
}
}

实际上,想要补全其中的 countNumOfFiles()countSizeOfFiles() 这两个函数,并不是件难事,实际上这就是树上的递归遍历算法。对于文件,我们直接返回文件的个数(返回 1)或大小。对于目录,我们遍历目录中每个子目录或者文件,递归计算它们的个数或大小,然后求和,就是这个目录下的文件个数和文件大小。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public int countNumOfFiles() {
if (isFile) {
return 1;
}
int numOfFiles = 0;
for (FileSystemNode fileOrDir : subNodes) {
numOfFiles += fileOrDir.countNumOfFiles();
}
return numOfFiles;
}

public long countSizeOfFiles() {
if (isFile) {
File file = new File(path);
if (!file.exists()) return 0;
return file.length();
}
long sizeofFiles = 0;
for (FileSystemNode fileOrDir : subNodes) {
sizeofFiles += fileOrDir.countSizeOfFiles();
}
return sizeofFiles;
}

单纯从功能实现角度来说,上面的代码没有问题,已经实现了我们想要的功能。但是,如果我们开发的是一个大型系统,从扩展性(文件或目录可能会对应不同的操作)、业务建模(文件和目录从业务上是两个概念)、代码的可读性(文件和目录区分对待更加符合人们对业务的认知)的角度来说,我们最好对文件和目录进行区分设计,定义为 FileDirectory 两个类。

按照这个设计思路,我们对代码进行重构。重构之后的代码如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
public abstract class FileSystemNode {
protected String path;

public FileSystemNode(String path) {
this.path = path;
}

public abstract int countNumOfFiles();
public abstract long countSizeOfFiles();

public String getPath() {
return path;
}
}

public class File extends FileSystemNode {
public File(String path) {
super(path);
}

@Override
public int countNumOfFiles() {
return 1;
}

@Override
public long countSizeOfFiles() {
java.io.File file = new java.io.File(path);
if (!file.exists()) return 0;
return file.length();
}
}

public class Directory extends FileSystemNode {
private List<FileSystemNode> subNodes = new ArrayList<>();

public Directory(String path) {
super(path);
}

@Override
public int countNumOfFiles() {
int numOfFiles = 0;
for (FileSystemNode fileOrDir : subNodes) {
numOfFiles += fileOrDir.countNumOfFiles();
}
return numOfFiles;
}

@Override
public long countSizeOfFiles() {
long sizeofFiles = 0;
for (FileSystemNode fileOrDir : subNodes) {
sizeofFiles += fileOrDir.countSizeOfFiles();
}
return sizeofFiles;
}

public void addSubNode(FileSystemNode fileOrDir) {
subNodes.add(fileOrDir);
}

public void removeSubNode(FileSystemNode fileOrDir) {
int size = subNodes.size();
int i = 0;
for (; i < size; ++i) {
if (subNodes.get(i).getPath().equalsIgnoreCase(fileOrDir.getPath())) {
break;
}
}
if (i < size) {
subNodes.remove(i);
}
}
}

文件和目录类都设计好了,如何用它们来表示一个文件系统中的目录树结构。具体的代码示例如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public class Demo {
public static void main(String[] args) {
/**
* /
* /wz/
* /wz/a.txt
* /wz/b.txt
* /wz/movies/
* /wz/movies/c.avi
* /xzg/
* /xzg/docs/
* /xzg/docs/d.txt
*/
Directory fileSystemTree = new Directory("/");
Directory node_wz = new Directory("/wz/");
Directory node_xzg = new Directory("/xzg/");
fileSystemTree.addSubNode(node_wz);
fileSystemTree.addSubNode(node_xzg);

File node_wz_a = new File("/wz/a.txt");
File node_wz_b = new File("/wz/b.txt");
Directory node_wz_movies = new Directory("/wz/movies/");
node_wz.addSubNode(node_wz_a);
node_wz.addSubNode(node_wz_b);
node_wz.addSubNode(node_wz_movies);

File node_wz_movies_c = new File("/wz/movies/c.avi");
node_wz_movies.addSubNode(node_wz_movies_c);

Directory node_xzg_docs = new Directory("/xzg/docs/");
node_xzg.addSubNode(node_xzg_docs);

File node_xzg_docs_d = new File("/xzg/docs/d.txt");
node_xzg_docs.addSubNode(node_xzg_docs_d);

System.out.println("/ files num:" + fileSystemTree.countNumOfFiles());
System.out.println("/wz/ files num:" + node_wz.countNumOfFiles());
}
}

对照着这个例子,再重新看一下组合模式的定义:“将一组对象(文件和目录)组织成树形结构,以表示一种‘部分 - 整体’的层次结构(目录与子目录的嵌套结构)。组合模式让客户端可以统一单个对象(文件)和组合对象(目录)的处理逻辑(递归遍历)。”

实际上这种组合模式的设计思路,与其说是一种设计模式,倒不如说是对业务场景的一种数据结构和算法的抽象。其中,数据可以表示成树这种数据结构,业务需求可以通过在树上的递归遍历算法来实现。

重点

组合模式的设计思路,与其说是一种设计模式,倒不如说是对业务场景的一种数据结构和算法的抽象。其中,数据可以表示成树这种数据结构,业务需求可以通过在树上的递归遍历算法来实现。

组合模式,将一组对象组织成树形结构,将单个对象和组合对象都看做树中的节点,以统一处理逻辑,并且它利用树形结构的特点,递归地处理每个子树,依次简化代码实现。使用组合模式的前提在于,你的业务场景必须能够表示成树形结构。所以,组合模式的应用场景也比较局限,它并不是一种很常用的设计模式。